一邊爬象山一邊想,為什麼
P(N) ~ R?因為 card(
N) < card(
R),應先確定 card(
N) < card(
P(
N)) ,所以我寫出以下證明。
印象中曾在 Wikipedia 瀏覽過 Cantor's Theorem(
https://goo.gl/6XoGTZ),現在自己想通了 !
爬山不忘想數學和賞鳥。
Cantor's Theorem: Given any set
A, there does not exist a function
f :
A →
P(A) that is onto.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgoJCjdFqov5WHz_fAN8roJAjVrkpTZOUhZG0lhB9a1EfgJWLbcw74PM49OqEXtkr61daWlt0ezCDSSCcimKISyFh90uCQQtJnSQNXmzUMHrLtNk9JRU1Z4bYuNTfgxL1BnizvRyu5kTBXk/s320/L1210179.JPG)
Assume that
f is an onto function that maps
A to the power set of
A. Then there is a subset
X of
A containing all elements that are not contained in their images.
X={x|x∉f(x)}
X is not empty because the pre-image of the empty set must be in
X.
X is an element of the power set. Let x be the pre-image of
X.
X is the image of x. If x∈
X, then f(x) does not contain x. Therefore, x∉
X. If x∉
X, then x∈
X by the definition of
X. (A contradiction.) Therefore,
X does not have a pre-image. Therefore,
f cannot be onto.
沒有留言:
張貼留言